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Abstract

This article presents a new adaptive reduced order model for resolving the angular
direction of the Boltzmann transport equation, based on proper orthogonal decomposi-
tion (POD) and the method of snapshots. It builds upon previous methods of applying
POD to the angular dimension, with modifications to increase accuracy and solver sta-
bility. Previous methods used continuous global functions spanning the whole sphere.
The new approach, discontinuous POD (DPOD), partitions the surface of the sphere
into angular regions, each with an independent set of POD basis functions. Combined,
these can approximate flux distributions which span the sphere using optimised basis
functions for each angular region. In addition, a novel implementation of adaptive an-
gular resolution known as adaptive discontinuous POD (ADPOD) is presented, which
allows the number of DPOD basis functions to vary by angular octant and spatial ele-
ment. DPOD and ADPOD are applied to two problems in order to demonstrate their
benefits compared to POD. Both are shown to reduce the number of solver iterations
required to find a solution and decrease the error in the angular flux.

1 Introduction

The Boltzmann Transport Equation (BTE) is a linear partial differential equation which de-
scribes particle transport statistically. Finding numerical solutions to the BTE is vital for a
wide range of applications involving particle transport, including aerodynamics [1], radiative
transport [2] and solid state physics [3]. As the BTE is not analytically solvable in general,
numerical methods are used. This is often computationally expensive, as the problem may
be up to 7-dimensional - 3 space, 2 angle, 1 time and 1 energy [4]. Each additional dimension
multiplies the degrees of freedom of the problem, increasing both the computation time and
memory requirements. The challenge of solving the BTE for complex systems has been one
of the motivations for investigation into Reduced Order Modelling (ROM).

Reduced Order Models (ROMs) have rapidly gained popularity in recent years, as they
allow solutions from a conventional model to be used in the creation of a new model with
comparable accuracy but reduced computational complexity. ROMs have been applied to
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a vast range of problems, from signal analysis and pattern recognition [5], to statistics [6],
and geophysical fluids [7]. They have been particularly successful in simulating fluid flows
following the early work of Lumley [8], and have been applied to turbulent pipe flows [9],
wakes behind a cylinder [10], flows across air foils [11], the mixing of fluid layers [12], thermal
currents [13, 14] and ocean models [15]. Their success lies in the construction of optimal
reduced basis sets that can resolve a class of problems using very few functions. This en-
ables the discrete problem to be formed with low dimensionality, typically of the order of a
hundred or fewer. These systems are significantly smaller, and thus more efficient to solve,
than high dimensional models formed from discretisations such as the finite element [16],
finite difference [17] and finite volume methods [18].

There are several techniques for constructing reduced basis sets, which can be categorised
as either a priori or a posteriori methods. A priori methods such as Proper Generalised
Decomposition aim to generate reduced bases without solutions to a full model [19], whereas
a posteriori methods such as the Empirical Interpolation Method [20, 21], neural networks
[22] and Proper Orthogonal Decomposition (POD) use existing solutions to produce a re-
duced basis for use in further simulation. This work will focus on the method of POD, first
proposed by Pearson [23], in conjunction with the method of snapshots [24]. This approach
uses a selection of snapshots, which are solutions obtained from a full order model such as
a high resolution finite element model, to form optimal basis functions for a particular class
of problems.

In the field of nuclear engineering, ROMs have begun to make progress towards provid-
ing efficient and accurate predictions for both reactor physics and shielding problems. Early
work in reactor physics includes [25], which applied POD to resolve the spatial dependence
of general eigenvalue problems, and [26], which used it to perform transient analysis of ac-
celerator driven systems. A comparison of POD to modal methods in transient analysis
is given in [27], and the use of ROMs to resolve sub-channels in lead cooled fast reactors
is developed in [28]. POD has also been applied to resolve the angular dependence of the
neutron transport equation [29], which was followed by similar work to resolve the angular
dimension in radiative heat transfer problems [30]. More recent work has applied POD to
non-linear feedback effects within lead-cooled reactors [31], fuel burnup within benchmark
systems [32], molten salt reactor analysis [33], and natural thermohydraulic circulation [34].

This article presents a new discretisation method using a POD based ROM to resolve the
angular dimension of the Boltzmann transport equation. This work is based on [29] which
also developed an angular ROM for the BTE, but the new method presented here provides
improvements in both accuracy and solver stability. Following initial publication of [29],
further investigation found that the POD discretisation could result in solver instabilities,
whereby the total solver iterations required for solution convergence oscillated significantly
with varying POD expansion sizes. This issue seems inherent with the POD basis functions
themselves, as similar traits have been observed with two independent codes using different
spatial FEM formulations and solver technologies. That is, in [29] a stabilized continuous
FEM with a GMRES solver was used, and here a discontinuous FEM with a sweep based
solver is employed. A likely contributing factor to these instabilities is the use of global
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POD basis functions that direct particles through all angles on the sphere. Apart from this
placing significant strain on the basis functions to reconstruct solutions over wide angles,
other such functions which are not based on spherical harmonics have been shown in previ-
ous studies to cause other numerical issues [35]. In [35] a remedy was to break the global
span of the functions and instead use localised functions covering the octants of the sphere.
Thus, a new approach has been formulated here that allows the angular flux to be resolved
using optimised basis functions over distinct angular regions. These regions can be defined
arbitrarily, but in this case each angular octant delimits a partition, which is shown to be
effective in stabilizing the method.

This article also presents an adaptive angular algorithm enabling each spatial node to be
resolved independently using the optimal number of angular basis functions. Whilst other
adaptive angular algorithms exist [36, 37, 38], this is the first time such a method has been
developed with POD basis sets. Thus, the novelty of this article is in the development of
a new angular reduced order model with adaptive capabilities. The model can provide op-
timised angular resolution using new adaptive POD basis sets, which improve solver scaling
and solution accuracy while reducing the discrete problem size.

In generating the POD angular functions, snapshots of the angular flux vectors are taken
through space, rather than through time as in conventional POD approaches. This has sim-
ilarities to [39, 40], which solve the two dimensional time-independent parabolized Navier-
Stokes equation using a spatial dimension as though it were time.

This article is set out as follows. Section 2 explains the method used to produce the POD
model. It describes the Boltzmann transport equation, the full order discretisation of the
angular and spatial dimensions, then the process of recording snapshot data and forming
the new reduced order model. In section 3, two numerical examples are presented which
demonstrate the ability of the ROM to provide accurate and efficient solutions for both
reactor-type and shielding-type problems. Section 4 completes this article with a conclusion
of its findings, and suggests future work which may produce further improvements. Section 5
gives acknowledgements, section 6 provides a bibliography, and tables are included in section
7 at the end of the article.

2 Discontinuous and Adaptive Proper Orthogonal De-

composition Methods

2.1 The Boltzmann Transport Equation

The steady state, mono-energetic Boltzmann transport equation describes the angular flux
ψ(~r,Ω) in direction Ω at position ~r:

Ω · ∇ψ(~r,Ω) + Σt(~r)ψ(~r,Ω) = qex(~r) + qs(~r,Ω
′ −→ Ω) (1)
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Where qex denotes the isotropic external source, and the scattering source term qs is given
by:

qs(~r,Ω
′ −→ Ω) =

∫
Ω′

Σs(~r,Ω
′ −→ Ω)ψ(~r,Ω′)dΩ′ (2)

The macroscopic scattering, absorption and total removal cross sections are given by Σs, Σa

and Σt respectively, and are related by:

Σt = Σs + Σa (3)

The first term in equation 1 is the advection operator Ω·∇, which can be written in Cartesian
coordinates as:

Ω · ∇ = (Ωx,Ωy,Ωz) · (
∂

∂x
,
∂

∂y
,
∂

∂z
) = Ωx

∂

∂x
+ Ωy

∂

∂y
+ Ωz

∂

∂z
(4)

Where Ωx, Ωy and Ωz are the components of the unit vector Ω in Cartesian space.

2.2 Angular Discretisation of the Boltzmann Transport Equation

To discretise the angular dimension of equation 1, the angular flux ψ(~r,Ω) is approximated
by a sum of na angular basis functions Gj(Ω) multiplied by the coefficients Φj(~r):

ψ(~r,Ω) ≈
na∑
j=1

Gj(Ω)Φj(~r) (5)

The approximation in equation 5 is inserted into equation 1, which is then weighted and
integrated over all angles. The Bubnov-Galerkin method is applied, which uses the angular
basis functions Gi as weights. The angularly discretised form of the BTE can therefore be
written as:

na∑
j=1

(∫
Ω

Gi(Ω)Ω · ∇Gj(Ω)dΩ Φj(~r) +

∫
Ω

Gi(Ω)Σt(~r)Gj(Ω)dΩ Φj(~r)
)

−
∫

Ω

Gi(Ω)qs(~r,Ω
′ −→ Ω)dΩ =

∫
Ω

Gi(Ω)qex(~r)dΩ

∀ i ∈ {1, na} (6)

The Cartesian components of the advection operator Ω · ∇, given by equation 4, are substi-
tuted into equation 6:

na∑
j=1

(∫
Ω

Gi(Ω)Ωx
∂

∂x
Gj(Ω)dΩ Φj(~r) +

∫
Ω

Gi(Ω)Ωy
∂

∂y
Gj(Ω)dΩ Φj(~r)

+

∫
Ω

Gi(Ω)Ωz
∂

∂z
Gj(Ω)dΩ Φj(~r) +

∫
Ω

Gi(Ω)Σt(~r)Gj(Ω)dΩ Φj(~r)
)

−
∫

Ω

Gi(Ω)qs(~r,Ω
′ −→ Ω)dΩ =

∫
Ω

Gi(Ω)qex(~r)dΩ

∀ i ∈ {1, na} (7)
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Equation 7 can be written in matrix form as:

Ax
∂Φ(~r)

∂x
+ Ay

∂Φ(~r)

∂y
+ Az

∂Φ(~r)

∂z
+H(~r)Φ(~r) = Q(~r) (8)

Where Ax, Ay, Az and H are matrices of size na × na. Φ(~r) and Q(~r) are vectors of size na,
containing the coefficients of the angular expansion and the contribution of the source term,
respectively. The components of each matrix and vector at row i, column j are given by:

Axij =

∫
Ω

GiΩxGjdΩ

Ayij =

∫
Ω

GiΩyGjdΩ

Azij =

∫
Ω

GiΩzGjdΩ

Hij =

∫
Ω

GiΣt(~r)GjdΩ−
∫

Ω

Giqs(~r,Ω′ −→ Ω)dΩ

Qi =

∫
Ω

Giqex(~r)dΩ

A vector of matrices A is defined as A = (Ax, Ay, Az), which allows equation 8 to be written
as:

(A · ∇+H(~r))Φ(~r) = Q(~r) (9)

2.3 Spatial Discretisation of the Boltzmann Transport Equation

The discontinuous finite element method is applied to discretise the spatial dimensions of
equation 9 [41]. The equation is converted to its weak form by weighting it with a set of ns

basis functions Ni(~r) and integrating over the volume of each element, Ve:(∫
Ve

Ni(~r)A · ∇dVe +

∫
Ve

Ni(~r)H(~r)dVe

)
Φ(~r) =

∫
Ve

Ni(~r)Q(~r)dVe

∀ i ∈ {1, ns} (10)

Green’s Theorem is applied to the advection term in equation 10, splitting it into an integral
over Ve and another over the element boundary Γe:(∫

Γe

Ni(~r)(A · n̂)dΓe −
∫
Ve

∇Ni(~r) · AdVe +

∫
Ve

Ni(~r)H(~r)dVe

)
Φ(~r)

=

∫
Ve

Ni(~r)Q(~r)dVe

∀ i ∈ {1, ns} (11)

n̂ is the unit vector normal to the element boundary. The angularly discretised flux Φ(~r) is
approximated as a sum of the spatial basis functions Nj(~r) multiplied by the coefficients Ψj:

Φ(~r) ≈
ns∑
j=1

ΨjNj(~r) (12)
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The Bubnov-Galerkin method is applied, which uses the same set of weights as basis func-
tions. Inserting equation 12 into equation 11 gives:

ns∑
j=1

(∫
Γe

Ni(~r)(A · n̂)Nj(~r)dΓe −
∫
Ve

∇Ni(~r) · ANj(~r)dVe+∫
Ve

Ni(~r)H(~r)Nj(~r)dVe

)
Ψj =

∫
Ve

Ni(~r)Q(~r)dVe

∀ i ∈ {1, ns} (13)

First order upwinding will be used to calculate the flow at the element boundaries [42]. The
boundary term must therefore be split into inflow and outflow components [43]:

ns∑
j=1

∫
Γe

Ni(~r)(A · n̂)Nj(~r)dΓeΨj

=
ns∑
j=1

(∫
Γe

Ni(~r)(A
in · n̂)Nj(~r)dΓeΨ

in
j +

∫
Γe

Ni(~r)(A
out · n̂)Nj(~r)dΓeΨ

out
j

)
∀ i ∈ {1, ns} (14)

The outflow Ψout
j is the angular flux vector of the element in question, and the inflow Ψin

j is
the angular flux vector of its upstream neighbour. Equation 14 is inserted into equation 13
to give the final form of the discretised equations:

ns∑
j=1

{(
−
∫
Ve

∇Ni(~r)ANj(~r)dV +

∫
Ve

Ni(~r)H(~r)Nj(~r)dV
)

Ψj

+

∫
Γe

Ni(~r)(A
in · n̂)Nj(~r)dΓeΨ

in
j +

∫
Γe

Ni(~r)(A
out · n̂)Nj(~r)dΓeΨ

out
j

}
=

∫
Ve

Ni(~r)Q(~r)dV

∀ i ∈ {1, ns} (15)

2.4 The Discontinuous Angular Reduced Order Model

This section describes the reduced order discretisation of the angular dimension of the BTE.
The ROM is based on the use of Proper Orthogonal Decomposion and the method of snap-
shots to form optimal angular basis functions for a particular class of problem. Typical POD
methods use snapshots of spatial coefficients as they vary through time, but here angular
flux profiles are used as they vary through space. This idea was first proposed in [29], which
used vectors of angular coefficients to form the snapshot matrix, resulting in the formation
of POD basis functions that spanned the entire surface of the sphere. The fundamental dif-
ference in this work is to relax the global nature of the POD basis functions, and to instead
form basis sets that span subsets of the sphere. The selection of these angular regions can
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be arbitrary, but in this article each octant of the sphere defines a separate region, which is
shown to stabilise the basis functions and as such should be considered the starting point
for this method. Further subdivision may be beneficial in some contexts, such as highly
anisotropic flux distributions, but has not been investigated in this article. The angular
domain Ω is partitioned into the regions,

Ω =
8⋃

i=1

Ωi (16)

where Ωi here defines the ith octant, which will have its own set of optimised basis functions.
Figure 1 depicts one such octant.

Figure 1: An octant on the sphere, which defines the boundaries of an angular region.

Each class of problem is resolved for np cases with varying conditions, such as perturba-
tions to the nuclear material cross-sections. The vectors of angular coefficients formed at the
nodes of the spatial mesh are then partitioned into sets according to their angular region.
By way of example, if the Sn method is used then the vector of angular coefficients on one
particular node can be partitioned according to their direction,

Ψ =


Ψ1

Ψ2
...

Ψ8

 (17)

where Ψi is a vector containing the ni coefficients with associated directions within Ωi. Note

that na =
i∑
ni. This partitioning of the angular vector is used to form separate snapshot

matrices for each Ωi. When using the octants of the sphere as angular regions, 8 separate
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snapshot matrices are formed from the vectors of angular coefficients at the mesh nodes, for
all problems used in creation of the ROM. The snapshots generated are denoted by

Si =

 | | |
Ψ1

i Ψ2
i ... Ψnh

i

| | |

 , ∀i ∈ {1, 8} (18)

which is the concatenation of nh angular vectors from all mesh nodes and problems resolved
- given by nh = ns × np. The POD basis sets for each angular region Ωi can now be formed
through the SVD of each snapshot matrix,

Si = UiΣiV
T
i (19)

where Ui and Vi are unitary matrices of sizes na×na and nh×nh, respectively. The column
vectors of Ui contain the optimised basis vectors that best represent the snapshot data,
ordered such that the first nf columns form the optimal nf basis vectors in the Frobenius
norm. The angular POD basis matrices Ui are formed by truncating each snapshot matrix
such that only the first nf columns are retained:

U jk
i = Ujk

i ∀i ∈ {1, 8},∀j ∈ {1, nf},∀k ∈ {1, na} (20)

Where U jk
i and Ujk

i denote the jth row and kth column of the matrix associated with the
angular region i. The fraction of the information in Ui which is retained in Ui can be
determined from the singular values:

Ii =

nf∑
j=1

(Σjj
i )2

na∑
j=1

(Σjj
i )2

(21)

where Ii varies from 0 to 1, with 1 being total capture of the snapshot information. The
matrices Ui can be used to map the angular coefficients between the full and reduced order
models through the relationship,

Ψi(~r) ≈ Uiαi(~r) (22)

for each angular partition Ωi. The full POD expansion can be formed through the summation
of POD functions over each angular partition,

Ψ(~r) =
8∑

i=1

nf∑
j=1

U j
i α

j
i (~r) (23)

Where αj
i denotes the jth POD coefficient in angular region i. Note that there is freedom

to set the expansion size of each angular region independently. The combined mapping over
all angular partitions can be expressed as,

U =


U1 0 0 0 0

0
. . . 0 0 0

0 0 Ui 0 0

0 0 0
. . . 0

0 0 0 0 U8

 α =


α1
...
αi
...
α8

 =⇒ Uα =


U1α1

...
Uiαi

...
U8α8
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Equations 17 and 22 enable this to be compactly written as,

Uα(~r) ≈ Ψ(~r) (24)

Substituting equation 24 into equation 8 and premultiplying by UT projects the angular
discretised equations onto the POD space:(

UTAxU
∂

∂x
+ UTAyU

∂

∂y
+ UTAzU

∂

∂z
+ UTHU

)
α(~r) = UTQ (25)

Spatial discretisation can then be performed on equation 25 as described in section 2.3. Note
that in the case of a single angular region spanning the full sphere, the angular POD method
implemented by Buchan et al. [29], upon which this work is based, is recovered.

2.5 Adaptive Discontinuous Proper Orthogonal Decomposition in
Angle

This section presents an adaptive algorithm using the DPOD basis functions. Instead of
using the same number of basis functions nf everywhere, each octant i and element j has
an associated number of basis functions nij, which can be modified independently. The
adaptive algorithm seeks to determine where to add basis functions in order to maximise
their effectiveness in reducing total error. An initial solution is required in order to calculate
the error metric and begin to add basis functions, and so the problem in question is first
solved with:

nij = 2, ∀i, ∀j (26)

The DPOD basis functions form a hierarchical set, and so their coefficients tend towards
zero as the approximation converges to the exact solution. It is therefore possible to de-
termine which locations would benefit most from additional basis functions by comparing
their final coefficients. If the final coefficient in a particular location is large, it is likely that
an additional basis function would also have a large coefficient, and therefore significantly
impact the solution. However, examination of solution vectors at various points showed that
the magnitude of successive coefficients oscillates, and so a single small coefficient does not
guarantee convergence. As a result, the final coefficient alone was not a reliable metric. To
account for this, the larger of the final two coefficients at each location is compared. A list
of these coefficients Lij is compiled:

Lij = Max(α
nij−1
ij , α

nij

ij ), ∀i ∈ {1, 8}, ∀j ∈ {1, ns} (27)

Where αk
ij denotes the kth angular coefficient for octant i at node j. The list Lij is sorted

by magnitude, and the largest n+ entries have their associated nij values increased, while
the smallest n− have their nij values decreased (to a minimum of two). Once nij has been
adjusted, the process repeats until the problem has converged to within the desired tolerance.

3 Numerical Examples

In this section, two numerical examples are presented in order to compare POD, DPOD
and ADPOD. Uniform quadrilateral FEM spatial meshes are employed, using discontinuous
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linear basis functions. The full order method employs the Sn discretisation, with a sufficiently
high angular resolution to ensure that the solutions have converged in angle. A sweep based
solver is used to resolve the Sn and all POD methods. At present, this solver has not been
optimised, and so computational efficiency is determined based on the number of solver
iterations required for solution convergence, and the error for a given number of angular
degrees of freedom. It should be noted that for the POD and DPOD methods the complexity,
and hence computation time, of each solver iteration is the same for a given number of basis
functions. Furthermore, the sparsity within the DPOD angular streaming matrices (75% for
2D and 87% for 3D) has not been considered, and so DPOD could potentially be implemented
more efficiently than POD. This will be reviewed in future works, but the purpose of this
analysis is to demonstrate the novel methods’ improved solver convergence and increased
accuracy for a given basis size when compared with Sn and previous angular POD methods.

3.1 The Dog-Leg Duct Problem

The first example is a dog-leg duct problem [44]. Figure 2a shows a schematic of the domain.
Region 1 is a source, region 2 is the duct, and region 3 is a heavy absorber. Vacuum boundary
conditions are applied to the top and right boundaries, and reflective boundary conditions to
the bottom and left boundaries. The spatial dimension is discretised with a 140×180 mesh
of discontinuous linear quadrilateral elements. The full order solutions used for snapshots
and error calculations employed the S40 angular discretisation. Figure 2b shows the scalar
flux distribution of the S40 solution to the extrapolation problem.

(a) Schematic
(b) S40 scalar flux solution

Figure 2: Schematic (a) and S40 scalar flux solution (b) for the dog-leg duct extrapolation problem. Region
1 is the source, region 2 is the void duct and region 3 is a highly absorbing material.

Tables 1 and 2 list the material cross sections for the training and test problems, respect-
ively. The snapshot matrix was formed from all three training solutions, and the resulting

10



POD bases were used to solve the test problems. The first test problem is referred to as the
seen problem, as its material properties are identical to one of the training solutions. The
other two are both unseen problems. The interpolation problem has its Σa value within the
range for which snapshots were produced, while Σa for the extrapolation problem lies outside
this range.

(a) Seen (b) Interpolation

(c) Extrapolation

Figure 3: The effects of increasing basis function count on relative scalar flux error for the dog-leg duct
problem.

Figure 3 presents the L1-norm of the relative scalar flux error in solutions of the dog-leg
duct problem against the mean number of basis functions per node. Low order Sn solutions
with degrees of freedom equivalent to the ROMs’ are also shown, in order to provide a com-
parison between the ROMs and a full order model of equivalent computational complexity.
POD consistently has lower error than Sn with the same number of basis functions. DPOD
has a similar level of error to POD for this problem. ADPOD is a huge improvement upon
both, particularly for larger numbers of basis functions, where it has an error almost two
orders of magnitude smaller than POD and DPOD.
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(a) Seen (b) Interpolation

(c) Extrapolation

Figure 4: The effects of increasing basis function count on the number of iterations required to converge to
a solution for the dog-leg duct problem.

Figure 4 shows the number of solver iterations required to converge the solution for each
method. A ROM solution was considered converged when the L1-norm of the difference
between current and previous iterations’ scalar flux solutions decreased below 10−6. In the
case of ADPOD, the number of iterations is presented for each adaptive step, in order to
demonstrate the stability of the ADPOD bases throughout the adaptive process. Due to
the non-scattering media, the Sn discretisation required just two iterations to converge to a
solution, though a third was performed to verify its convergence. As the POD basis func-
tions send flux in every direction rather than just the direction of the current solver sweep,
POD required up to 1.8 orders of magnitude more iterations to converge. The number of
iterations required is also inconsistent, with a range of approximately an order of magnitude,
which causes unpredictable variation in the solve time. By contrast, DPOD and ADPOD
only transport flux in the direction of the current sweep, and so they do not suffer from this
disadvantage. Instead, they converge in two sweeps as with Sn. As the solve time is de-
pendant on the number of iterations required to converge the solution, DPOD and ADPOD
demonstrate significant benefits over POD.
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(a) S8 (b) POD

(c) Discontinuous POD (d) Adaptive Discontinuous POD

Figure 5: Solutions to the dog-leg duct extrapolation problem for all four methods with 40 basis functions
per node, on average in the case of ADPOD.

Figure 5 depicts the scalar flux solutions for the extrapolation problem produced by each
method, using 40 basis functions per node (on average in the case of ADPOD). The full
order solution to this problem is shown in figure 2b. The S8 solution exhibits significant ray
effects, which results in a highly inaccurate flux distribution within the duct. POD reduces
these ray effects somewhat, though they are still visible. However, it has the most inaccurate
peak flux by far. DPOD suffers from significant ray effects in this case, but its peak flux
is much closer to the expected value than that of POD. ADPOD drastically reduces ray
effects compared to every other method, and has the smallest error in its peak flux. Minor
distortions are present, but only in the regions with the least flux, where their effect on the
total error is insignificant. This clearly demonstrates the benefits of DPOD and particularly
ADPOD compared to previous methods in resolving non-scattering problems with few basis
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functions.

(a) -x, +y octant (b) +x, +y octant

(c) -x, -y octant (d) +x, -y octant

Figure 6: Number of ADPOD basis functions per octant per node for the duct extrapolation problem, with
a mean of 40 basis functions per node in total.

Figure 6 depicts the number of basis functions per node for each element and octant in
the domain. A large part of the domain had zero flux in three out of four octants, and the
adaptive algorithm successfully accounted for this by keeping the number of basis functions
in these regions at the minimum of two. Most basis functions were focused inside the duct,
where they contribute most to the overall solution. However, the absorbing regions had
a relatively low cross section, and so flux penetrated into these regions rather than being
immediately attenuated. The adaptive algorithm therefore added basis functions to these
regions as well. ADPOD’s ability to focus basis functions where they are most beneficial
explains its success in drastically reducing error for a given number of basis functions.
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Figure 7: The effect of increasing basis function count on relative angular flux error for the dog-leg duct
extrapolation problem.

Figure 7 presents the relative angular flux error against the number of basis functions
per node, which is a more accurate error metric than the scalar flux error. The results are
similar to the scalar flux error plots, but in this case DPOD is an improvement upon POD
in every situation. This suggests that POD and DPOD were comparable in scalar flux error
due to cancellation of errors, which does not occur with angular flux. Once again, ADPOD
performs significantly better than either method, particularly for large basis function counts.
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(a) x = 1.5cm, y = 1.5cm (b) x = 6.0cm, y = 10.5cm (c) x = 7.5cm, y = 16.0cm

Figure 8: Angular flux distributions at various points in the dog leg duct problem. From top to bottom,
S40, S8, and adaptive discontinuous POD. Both S8 and ADPOD have a mean of 40 basis functions per

node, while S40 has 840 basis functions per node.

Figure 8 depicts the angular flux profiles at three points in the domain. The locations
of each point are shown in figure 2a. The S40 solution has 840 basis functions, while the
S8 and ADPOD solutions both have 40. The S8 angular discretisation is highly inaccurate.
The solid angles subtended by each basis function are large, and so complex angular flux
profiles can not be accurately represented. By contrast, ADPOD is able to reproduce the S40

angular flux profiles with only minor differences. The ADPOD solution has a higher angular
resolution as its snapshots were produced with S40, and the adaptive method included enough
basis functions at these points to reproduce the S40 solution with only minor errors. This
demonstrates the benefits of ADPOD in approximating higher order angular discretisations.
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3.2 The Watanabe-Maynard Problem

The second example is the Watanabe-Maynard problem [45]. A schematic is shown in Figure
9a. Region 1 is an isotropic square source, region 2 is a void, and region 3 is a highly scattering
material. Vacuum boundary conditions are applied to the top and right boundaries, and
reflective boundary conditions to the bottom and left boundaries. The domain is discretised
using an 80×80 mesh of discontinuous linear quadrilateral elements in space. Full order
solutions for snapshot generation and error comparison were produced using S30 in angle.
Figure 9b shows the scalar flux distribution of the S30 solution to the extrapolation problem.

(a) Schematic
(b) S30 scalar flux solution

Figure 9: Schematic (a) and S30 scalar flux solution (b) for the Watanabe-Maynard extrapolation problem.
Region 1 is the source, region 2 is a void and region 3 is a highly scattering material.
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Figure 10: Σa and Σs values used to produce snapshots and solutions for the
Watanabe-Maynard problem.

Figure 10 shows Σa and Σs values in the non-void regions for eight solutions and three
test problems. The snapshot matrix was formed by combining all eight training solutions,
and the POD bases produced were used to solve all three test problems. As previously, one
set of material properties had been seen in the offline stage, one was an interpolation between
seen properties, and one was an extrapolation outside the range of seen material properties.
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(a) Seen (b) Interpolation

(c) Extrapolation

Figure 11: The effects of increasing basis function count on relative scalar flux error for the
Watanabe-Maynard problem.

Figure 11 presents the L1-norm of the relative scalar flux error in solutions of the
Watanabe-Maynard problem against the mean number of basis functions per node for each
method. Results from low order Sn solutions are shown for comparison, as previously. POD
generally has a lower error than Sn with the same number of basis functions, though it
struggles with 12 and fewer. In particular, POD could not produce a solution for the seen
problem with 12 basis functions, as the system diverged. DPOD did not suffer from this
issue, and also had consistently less error for a given number of basis functions than POD,
usually by a factor of two to three. ADPOD improved upon this, reducing error by a further
factor of two to three compared to DPOD.
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(a) Seen (b) Interpolation

(c) Extrapolation

Figure 12: The effects of increasing basis function count on the number of iterations required to converge a
solution for the Watanabe-Maynard problem.

Figure 12 shows the number of solver iterations required to converge the solution for
each method. The criterion for a solution to be considered converged was the same as for
the dog-leg duct problem. However, the Watanabe-Maynard problem contains scattering
regions, which must be resolved by iteration, and so every method required more iterations
to converge than for the dog-leg duct problem. As previously, POD performs much worse
than any other method by this metric. It consistently requires more iterations to solve
than the three other methods, and the exact number of iterations varies significantly. The
other methods all converge faster and more consistently, with similar numbers of iterations
required for each, though DPOD and ADPOD converge slightly faster than Sn. As the solve
time is dependant on the number of iterations required to converge the solution, DPOD and
ADPOD again demonstrate clear benefits over POD.
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(a) S6 (b) POD

(c) Discontinuous POD (d) Adaptive Discontinuous POD

Figure 13: Solutions to the Watanabe-Maynard extrapolation problem for all four methods with 24 basis
functions per node, on average in the case of ADPOD.

Figure 13 depicts the scalar flux solutions produced for the extrapolation problem by
each method with 24 basis functions per node (on average in the case of ADPOD). The full
order solution to this problem is shown in figure 9b. The S6 solution exhibits significant
ray effects. POD reduces these ray effects somewhat, but makes them less regular and so
increases error in some regions. It is particularly poor at resolving the source region, which
leads to a more inaccurate peak flux than even the S6 solution. DPOD improves upon the
previous method - ray effects are significantly reduced, the source region is well resolved
and the peak flux is relatively accurate. However, some visible ray effects are still present.
ADPOD further reduces ray effects compared to DPOD, and has a similar error in its peak
flux. This shows the advantages of DPOD and ADPOD in resolving scattering problems
with few basis functions.
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(a) -x, +y octant (b) +x, +y octant

(c) -x, -y octant (d) +x, -y octant

Figure 14: Number of ADPOD basis functions per octant per node for the duct extrapolation problem,
with a mean of 84 basis functions per node in total.

Figure 14 depicts the number of ADPOD basis functions per node for each element and
octant in the domain. In contrast to the dog-leg duct results, a significant amount of flux
was present in all four octants due to scattering. Despite this, the algorithm was able to
distribute the added basis functions in order to maximise their contribution to the solution.
Most basis functions were added to the top right octant, which contained the majority
of the flux due to the problem’s geometry. In the other three octants, basis functions were
primarily added downstream of the source and scattering regions. This optimisation enabled
ADPOD to improve upon POD and DPOD, despite the broad angular flux distribution in
the Watanabe-Maynard problem.
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Figure 15: The effect of increasing basis function count on relative angular flux error for the
Watanabe-Maynard extrapolation problem.

Figure 15 presents the relative angular flux error against the number of basis functions
per node. These are similar to the results for the dog-leg duct problem - POD has the highest
error, then DPOD, and ADPOD has the lowest. However, ADPOD does not improve upon
DPOD to the same extent as in the dog-leg duct problem. This is because flux travels
throughout the domain in this problem, and so basis functions are required everywhere. By
contrast, in the dog-leg duct problem flux is primarily limited to the duct itself, and so basis
functions can be focused in that region. The results again demonstrate that increasing the
basis function count consistently reduces the angular flux error.
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(a) x = 0.625cm, y = 0.625cm (b) x = 0.625cm, y = 4.375cm (c) x = 0.625cm, y = 8.750cm

Figure 16: Angular flux distributions at various points in the Watanabe-Maynard extrapolation problem.
From top to bottom, S30, S6, and adaptive discontinuous POD. ADPOD and S6 both use a mean of 24

basis functions per node, while S30 has 480.

Figure 16 depicts the angular flux profiles at three points within the domain. The loc-
ations of each point are shown in figure 9a. S6 and ADPOD both used 24 basis functions,
while S30 has 480. The S6 discretisation is highly inaccurate. It performs particularly poorly
in the scattering region, where the flux is distributed over a much wider range of angles than
it should be. ADPOD performs far better, producing a reasonable approximation to the
expected result.

4 Conclusion

This article has developed a new reduced order model for discretising the angular dimension
of the Boltzmann transport equation, which is based upon POD and the method of snap-
shots. The snapshots are formed from angular flux vectors taken from many spatial nodes,
in a similar manner to previous work on angular POD [29]. The novel aspects of this work
are the discontinuous formulation of the POD basis functions, which each span one octant
in angle rather than the entire sphere, and the implementation of angular adaptivity using
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these discontinuous basis functions.

For the same angular size, the method of DPOD is shown to consistently increase accuracy
slightly over POD, which is itself more accurate than Sn by up to half an order of magnitude.
Additionally, the number of solver iterations required to converge each solution was both
reduced by up to 1.8 orders of magnitude, and made more stable - solver iterations oscillated
with basis size when using POD, while with DPOD they converged to the same value and
did not oscillate. When combined, these two factors reduced solve times by up to 2 orders
of magnitude compared to POD for the dog-leg duct problem, and by up to 1.5 orders of
magnitude for the Watanabe-Maynard problem.

In both numerical examples, the implementation of angular adaptivity via ADPOD provided
further reductions in error. This was particularly successful in the dog-leg duct problem,
where ADPOD reduced error for a given number of basis functions by up to an order of
magnitude over DPOD, and thereby reduced solve times by up to 3 orders of magnitude in
total compared to POD. For the Watanabe-Maynard problem, the reduction in error com-
pared to DPOD was by a factor of 2-3, and the total reduction in solve time compared to
POD was by up to 1.8 orders of magnitude. A significant contributor to the reduction in
error is that ADPOD almost eliminated visible ray effects, thus improving accuracy in those
regions which would’ve been affected by them.

The benefits of DPOD and ADPOD have been clearly demonstrated in this article. They
offer reductions in both total error and solver iterations compared to previous angular POD
methods. As both of these factors contribute to computational complexity, when they are
both reduced computation time decreases significantly.

5 Acknowledgements

The authors wish to acknowledge the funding of this research through the grant EP/M022684/2.
This research utilised Queen Mary’s Apocrita HPC facility, supported by QMUL Research-
IT. http://doi.org/10.5281/zenodo.438045

6 Bibliography

[1] F. Golse. “Applications of the boltzmann equation within the context of upper at-
mosphere vehicle aerodynamics”. In: Computer Methods in Applied Mechanics and
Engineering 75.1 (1989), pp. 299–316. doi: https : / / doi . org / 10 . 1016 / 0045 -

7825(89)90031-5.

[2] S.P. Burns and M.A. Christen. “Spatial domain-based parallelism in large scale, participating-
media, radiative transport applications”. In: Numerical Heat Transfer, Part B: Fun-
damentals 31.4 (1997), pp. 401–421. doi: https://doi.org/10.2172/402363.

25



[3] W. Li et al. “ShengBTE: A solver of the Boltzmann transport equation for phonons”.
In: Computer Physics Communications 185.6 (2014), pp. 1747–1758. doi: https://
doi.org/10.1016/j.cpc.2014.02.015.

[4] S. Dargaville et al. “Scalable angular adaptivity for Boltzmann transport”. In: Journal
of Computational Physics (2019), pp. 109–124. doi: https://doi.org/10.1016/j.
jcp.2019.109124.

[5] K. Fukunaga. Introduction to Statistical Pattern Recognition. Second. Computer Sci-
ence and Scientific Computing. Academic Press, 1990. isbn: 9780122698514. doi:
https://doi.org/10.1016/C2009-0-27872-X.

[6] I.T. Jolliffe. Principal Component Analysis. Second. Berlin: Springer, Oct. 2002. isbn:
0387954422. doi: https://doi.org/10.1007/978-3-642-04898-2_455.

[7] D.T. Crommelin and A.J. Majda. “Strategies for model reduction: comparing different
optimal bases”. In: Journal of the Atmospheric Sciences 61 (2004), pp. 2206–2217.
doi: https://doi.org/10.1175/1520-0469(2004)061<2206:SFMRCD>2.0.CO;2.

[8] J.L. Lumley. “The Structure of Inhomogeneous Turbulent Flows”. In: Atmospheric
Turbulence and Radio Wave Propagation (1967), pp. 166–178.

[9] H.P. Bakewell and J.L. Lumley. “Viscous sublayer and adjacent wall region in turbulent
pipe flow”. In: The Physics of Fluids 10 (1967), pp. 1880–1889. doi: https://doi.
org/10.1063/1.1762382.

[10] F.R. Payne and J.L. Lumley. “Large-eddy structure of the turbulent wake behind
a circular cylinder”. In: The Physics of Fluids 10 (1967), pp. 194–196. doi: https:
//doi.org/10.1063/1.1762445.

[11] A.E. Dean and C. Mavriplis. “Low-dimensional description of the dynamics in separ-
ated flow past thick airfoil”. In: AIAA 32 (1994), pp. 1222–1227. doi: https://doi.
org/10.2514/3.12123.

[12] J. Delville, S. Bellin and J.P. Bonnet. “Use of the proper orthogonal decomposition in a
plane turbulent mixing layer, in Turbulence and Coherent Structures”. In: Dordrecht:
Kluwer Academic Publishers, 1991, pp. 75–90. doi: https://doi.org/10.1007/978-
94-015-7904-9_5.

[13] L. Sirovich and H. Park. “Turbulent thermal convection in a finite domain: PartI.
Theory”. In: Physics of fluids 2 (1990), pp. 1649–1658. doi: https://doi.org/10.
1063/1.857572.

[14] H. Park and L. Sirovich. “Turbulent thermal convection in a finite domain: PartII.
Numerical results”. In: Physics of fluids 2 (1990), pp. 1659–1668. doi: https://doi.
org/10.1063/1.857573.

[15] F. Fang et al. “A POD reduced order unstructured mesh ocean modelling method for
moderate Reynolds number flows”. In: Ocean Modelling 28 (1-3 2009), pp. 127–136.
doi: https://doi.org/10.1016/j.ocemod.2008.12.006.

[16] Thomas JR Hughes. The finite element method: linear static and dynamic finite ele-
ment analysis. Courier Corporation, 2012.

26



[17] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations. Society for Industrial and Applied Mathematics, 2007. doi: 10 . 1137 /

1 . 9780898717839. eprint: https : / / epubs . siam . org / doi / pdf / 10 . 1137 / 1 .

9780898717839. url: https://epubs.siam.org/doi/abs/10.1137/1.9780898717839.

[18] H. Adison. Principles and Practice of Finite Volume Method. Clanrye International,
2015. isbn: 9781632404176. url: https : / / books . google . co . uk / books ? id =

yUr7rQEACAAJ.

[19] F. Chinesta, P. Ladeveze and E. Cueto. “A short review on model order reduction
based on proper generalized decomposition”. In: Archives of Computational Methods
in Engineering 18.4 (2011), p. 395. doi: https://doi.org/10.1007/s11831-011-
9064-7.

[20] M. Barrault et al. “An ‘empirical interpolation’ method: application to efficient reduced-
basis discretization of partial differential equations”. In: Comptes Rendus Mathem-
atique 339.9 (2004), pp. 667–672. doi: https://doi.org/10.1016/j.crma.2004.08.
006.

[21] N.C. Nguyen and J. Peraire. “An efficient reduced-order modeling approach for non-
linear parametrized partial differential equations”. In: International Journal for Nu-
merical Methods in Engineering 76.1 (2008), pp. 27–55. doi: https://doi.org/10.
1002/nme.2309.

[22] D. Xiao et al. “Machine learning-based rapid response tools for regional air pollution
modelling”. In: Atmospheric Environment 199 (2019), pp. 463–473. doi: https://
doi.org/10.1016/j.atmosenv.2018.11.051.

[23] K. Pearson. “LIII. On lines and planes of closest fit to systems of points in space”. In:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
2.11 (1901), pp. 559–572. doi: https://doi.org/10.1080/14786440109462720.

[24] L. Sirovich. “Turbulence and the dynamics of coherent structures”. In: Quarterly of
Applied Mathematics 5 (1987), pp. 561–590. doi: https://doi.org/10.1090/qam/
910462.

[25] A.G. Buchan et al. “A POD reduced-order model for eigenvalue problems with applic-
ation to reactor physics”. In: International Journal for Numerical Methods in Engin-
eering 95.12 (2013), pp. 1011–1032. doi: https://doi.org/10.1002/nme.4533.

[26] F. Wols. Transient analyses of accelerator driven systems using modal expansion tech-
niques. 2010.

[27] A. Sartori et al. “Comparison of a Modal Method and a Proper Orthogonal Decom-
position approach for multi-group time-dependent reactor spatial kinetics”. In: Annals
of Nuclear Energy 71.0 (2014), pp. 217–229. doi: https://doi.org/10.1016/j.
anucene.2014.03.043.

[28] A. Sartori et al. “A multi-physics reduced order model for the analysis of Lead Fast
Reactor single channel”. In: Annals of Nuclear Energy 87 (2016), pp. 198–208. doi:
https://doi.org/10.1016/j.anucene.2015.09.002.

27



[29] A.G. Buchan et al. “A POD reduced order model for resolving angular direction
in neutron/photon transport problems”. In: Journal of Computational Physics 296
(2015), pp. 138–157. doi: https://doi.org/10.1016/J.JCP.2015.04.043.

[30] J. Tencer et al. “Accelerated Solution of Discrete Ordinates Approximation to the
Boltzmann Transport Equation for a Gray Absorbing–Emitting Medium Via Model
Reduction”. In: Journal of Heat Transfer 139.12 (Aug. 2017). doi: https://doi.org/
10.1115/1.4037098.

[31] S. Lorenzi. “An Adjoint Proper Orthogonal Decomposition method for a neutronics
reduced order model”. In: Annals of Nuclear Energy 114 (2018), pp. 245–258. doi:
https://doi.org/10.1016/j.anucene.2017.12.029.

[32] C. Castagna et al. “Development of a Reduced Order Model for Fuel Burnup Analysis”.
In: Energies 13.4 (Feb. 2020), p. 890. doi: https://doi.org/10.3390/en13040890.

[33] F. Alsayyari et al. “A nonintrusive adaptive reduced order modeling approach for a
molten salt reactor system”. In: Annals of Nuclear Energy 141 (2020), p. 107321. doi:
https://doi.org/10.1016/j.anucene.2020.107321.

[34] R. Manthey et al. “Reduced order modeling of a natural circulation system by proper
orthogonal decomposition”. In: Progress in Nuclear Energy 114 (2019), pp. 191–200.
doi: https://doi.org/10.1016/j.pnucene.2019.03.010.

[35] A.G. Buchan et al. “Linear and quadratic octahedral wavelets on the sphere for angular
discretisations of the Boltzmann transport equation”. In: Annals of Nuclear Energy
32.11 (2005), pp. 1224–1273. issn: 0306-4549. doi: https://doi.org/10.1016/j.
anucene.2005.01.005. url: http://www.sciencedirect.com/science/article/
pii/S0306454905000356.

[36] S. Dargaville et al. “Angular adaptivity with spherical harmonics for Boltzmann trans-
port”. In: Journal of Computational Physics 397 (Nov. 2019), p. 108846. issn: 0021-
9991. doi: 10.1016/j.jcp.2019.07.044. url: http://dx.doi.org/10.1016/j.
jcp.2019.07.044.

[37] H. Park and C.R.E. de Oliveira. “Coupled Space-Angle Adaptivity for Radiation Trans-
port Calculations”. In: Nuclear Science and Engineering 161.2 (2009), pp. 216–234.
doi: https://doi.org/10.13182/NSE161-216.

[38] A.G. Buchan et al. “Self-Adaptive Spherical Wavelets for Angular Discretizations of
the Boltzmann Transport Equation”. In: Nuclear Science and Engineering 158 (Mar.
2008). doi: https://doi.org/10.13182/NSE08-A2751.

[39] J. Du et al. “Reduced-order modeling based on POD of a parabolized Navier-Stokes
equation model I: forward model”. In: International Journal for Numerical Methods in
Fluids 69.3 (2012), pp. 710–730. doi: https://doi.org/10.1002/fld.2606.

[40] J. Du et al. “Reduced-order modeling based on POD of a parabolized Navier-Stokes
equation model II: Trust region POD 4-D VAR Data Assimilation”. In: Computers &
Mathematics with Applications 65 (2013), pp. 380–394. doi: https://doi.org/10.
1016/j.camwa.2012.06.001.

28



[41] W.H. Reed and T.R. Hill. “Triangular mesh methods for the neutron transport equa-
tion”. In: (Oct. 1973).
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7 Tables

Problem Region Source (cm−2s−1) Σa (cm−1) Σs (cm−1)

1 1.00 0.40 0.00
1 2 0.00 0.00 0.00

3 0.00 0.40 0.00

1 1.00 0.50 0.00
2 2 0.00 0.00 0.00

3 0.00 0.50 0.00

1 1.00 0.60 0.00
3 2 0.00 0.00 0.00

3 0.00 0.60 0.00

Table 1: Material properties for the dog-leg duct training solutions.
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Problem Region Source (cm−2s−1) Σa (cm−1) Σs (cm−1)

1 1.00 0.50 0.00
Seen 2 0.00 0.00 0.00

3 0.00 0.50 0.00

1 1.00 0.45 0.00
Interpolate 2 0.00 0.00 0.00

3 0.00 0.45 0.00

1 1.00 0.35 0.00
Extrapolate 2 0.00 0.00 0.00

3 0.00 0.35 0.00

Table 2: Material properties for the dog-leg duct test problems.
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